0

Full Content is available to subscribers

Subscribe/Learn More  >

Solving Military Vehicle Transient Heat Load Issues Using Phase Change Materials

[+] Author Affiliations
Johnathon P. Putrus, Peter Schihl

Tank-Automotive Research and Development Engineering Center, Warren, MI

Stanley T. Jones

Science Applications International Corporation, Evergreen, CO

Badih A. Jawad, Giscard Kfoury, Selin Arslan

Lawrence Technological University, Southfield, MI

Paper No. IMECE2015-52187, pp. V08BT10A041; 7 pages
doi:10.1115/IMECE2015-52187
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME

abstract

Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. Latent heat energy storage systems that utilize Phase Change Materials (PCMs) present an effective way of storing thermal energy and offer key advantages such as high-energy storage density, high heat of fusion values, and greater stability in temperature control. Military vehicles frequently undergo high-transient thermal loads and often do not provide adequate cooling for powertrain subsystems.

This work outlines an approach to temporarily store excess heat generated by the transmission during high tractive effort situations through the use of a passive PCM retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating.

A numerical heat transfer model has been developed based on a conceptual vehicle transmission TMS. The model predicts the transmission fluid temperature response with and without a PCM retrofit. The developed model captures the physics of the phase change processes to predict the transient heat absorption and rejection processes. It will be used to evaluate the effectiveness of proposed candidate implementations and provide input for TMS evaluations.

Parametric studies of the heat transfer model have been conducted to establish desirable structural morphologies and PCM thermophysical properties. Key parameters include surface structural characteristics, conduction enhancing material, surface area, and PCM properties such as melt temperature, heat of fusion, and thermal conductivity.

To demonstrate proof-of-concept, a passive PCM enclosure has been designed to be integrated between a transmission bell housing and torque converter. This PCM-augmented module will temporarily strategically absorb and release heat from the system at a controlled rate. This allows surging fluid temperatures to be clamped below the maximum effective fluid temperature rating thereby increasing component life, reliability, and performance. This work outlines cooling system boundary conditions, mobility/thermal loads, model details, enclosure design characteristics, potential PCM candidates, design considerations, performance data, cooling system impacts, conclusions, and potential future work.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In