0

Full Content is available to subscribers

Subscribe/Learn More  >

Steel Structure Prediction for Continuous Steel Casting by Means of a Parallel GPU-Based Heat Transfer and Solidification Model

[+] Author Affiliations
Lubomír Klimeš, Josef Štětina, Tomáš Mauder

Brno University of Technology, Brno, Czech Republic

Paper No. IMECE2015-51425, pp. V08BT10A032; 8 pages
doi:10.1115/IMECE2015-51425
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME

abstract

Continuous casting of steel is currently a predominant production method of steel, which is used for more than 95% of the total world steel production. An effort of steelmakers is to cast high-quality steel with a desired structure and with a minimum number of defects, which reduce the productivity. The paper presents our developed GPU-based heat transfer and solidification model for continuous casting, which is coupled with a submodel used for the prediction of the steel micro-structure. The model is implemented in CUDA/C++, which allows for rapid computing on NVIDIA GPUs. The time-dependent temperature distribution calculated by the thermal model is iteratively passed to the submodel for the steel micro-structure prediction. The structural submodel determines the spatially-dependent rates of temperature change in the strand, for which the interdendritic solidification model IDS predicts the micro-structure of steel. The paper presents preliminary simulation results for the steel grade used for pressure vessel plates, which is sensitive to rapid cooling rates.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In