0

Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying the Thermal Accommodation Coefficient for Iron Surfaces Using Molecular Dynamics Simulations

[+] Author Affiliations
T. A. Sipkens, K. J. Daun, M. Karttunen

University of Waterloo, Waterloo, ON, Canada

J. T. Titantah

Western University, London, ON, Canada

Paper No. IMECE2015-52150, pp. V08BT10A027; 10 pages
doi:10.1115/IMECE2015-52150
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME

abstract

With nanotechnology becoming an increasingly important field in contemporary science, there is a growing demand for a better understanding of energy exchange on the nanoscale. Techniques, such as time-resolved laser-induced incandescence, for example, require accurate models of gas-surface interaction to correctly predict nanoparticle characteristics. The present work uses molecular dynamics to define the thermal accommodation coefficient of various gases on iron surfaces. A more in depth analysis examines the scattering distributions from the surfaces and examines how well existing scattering kernels and classical theories can represent these distributions. The molecular dynamics-derived values are also compared to recent experimental time-resolved laser-induced incandescence studies aimed at evaluating the thermal accommodation coefficient across a range of surface-gas combinations.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In