Full Content is available to subscribers

Subscribe/Learn More  >

Dense Granular Flows as a New Heat Transfer Fluid for Concentrated Solar Power

[+] Author Affiliations
Megan F. Watkins, Richard D. Gould

North Carolina State University, Raleigh, NC

Paper No. IMECE2015-51069, pp. V08BT10A006; 7 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME


The increasing interest in concentrated solar power as a new form of renewable energy necessitates an improvement in overall system efficiency. Current heat transfer fluids employed to capture the concentrated heat demonstrate limited working temperature ranges. This study sought to investigate the use of dense granular flows as a possible new heat transfer fluid, as ceramic particles present virtually no restriction on working temperature. A bench-scale system simulating a single tube of a concentrated solar power central receiver was constructed and used to evaluate the heat transfer properties of the flow at low temperatures. Ceramic particles, 270μm in diameter, were gravity-fed through a vertical tube, resulting in granular flows with particle packing fractions of approximately 60%. Radial temperature profiles were measured and used to calculate the mean temperature of the fluid at different axial tube locations. The heat transfer coefficient was then calculated based on the input heat flux and measured wall and mean temperatures. The effect of the mass flow rate on the heat transfer coefficient was examined by using different orifices at the tube exit. As expected, the heat transfer coefficient increased with increasing flow rate. Heat transfer coefficients ranging from 330 to 380 W/m2-K were obtained for bulk temperatures ranging from 40 to 70°C. Previous works demonstrated comparable heat transfer coefficients at higher bulk temperatures. Thus, our preliminary heat transfer coefficient results demonstrate the potential of dense flows of ceramic particles for obtaining beneficial heat transfer properties at extremely high operating temperatures.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In