Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Performance of a Receiver Tube for a High Concentration Ratio Parabolic Trough System and Potential for Improved Performance With Syltherm800-CuO Nanofluid

[+] Author Affiliations
Aggrey Mwesigye, Zhongjie Huan

Tshwane University of Technology, Pretoria, South Africa

Josua P. Meyer

University of Pretoria, Hatfield, South Africa

Paper No. IMECE2015-50234, pp. V08BT10A004; 11 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 8B: Heat Transfer and Thermal Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5750-2
  • Copyright © 2015 by ASME


In this paper, the thermal performance of a high concentration ratio parabolic trough system and the potential for improved thermal performance using Syltherm800-CuO nanofluid were investigated and presented. The parabolic trough system considered in this study has a concentration ratio of 113 compared with 82 in current commercial systems. The heat transfer fluid temperature was varied between 350 K and 650 K and volume fractions of nanoparticle were in the range 1–6%. Monte-Carlo ray tracing was used to obtain the actual heat flux on the receiver’s absorber tube. The obtained heat flux profiles were subsequently coupled with a computational fluid dynamics tool to investigate the thermal performance of the receiver. From the study, the results show that with increased concentration ratios, receiver thermal performance degrades, with both the receiver heat loss and the absorber tube circumferential temperature differences increasing, especially at low flow rates. The results further show that the use of nanofluids significantly improves receiver thermal performance. The heat transfer performance increases up to 38% while the thermal efficiency increases up to 15%. Significant improvements in receiver thermal efficiency exist at high inlet temperatures and low flow rates.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In