0

Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity Evaluation of the AGR 3-4 Experiment Thermal Model Irradiated in the Advanced Test Reactor

[+] Author Affiliations
Grant L. Hawkes, James W. Sterbentz, Binh T. Pham

Idaho National Laboratory, Idaho Falls, ID

Paper No. IMECE2015-53544, pp. V06BT07A032; 10 pages
doi:10.1115/IMECE2015-53544
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5744-1
  • Copyright © 2015 by ASME

abstract

A temperature sensitivity evaluation has been performed on a thermal model for the AGR-3/4 fuel experiment on an individual capsule. The experiment was irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Four TRISO fuel irradiation experiments are planned for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program which supports the development of the Very High Temperature Gas-cooled Reactor under the Next-Generation Nuclear Plant project.

AGR-3/4 is the third TRISO-particle fuel test of the four planned and is intended to test tri-structural-isotropic (TRISO)-coated, low-enriched uranium oxy-carbide fuel. The AGR-3/4 test was specifically designed to assess fission product transport through various graphite materials. The AGR-3/4 irradiation test in the ATR started in December 2011 and finished in April 2014. Forty-eight (48) TRISO-particle fueled compacts were inserted into 12 separate capsules for the experiment (four compacts per capsule).

The purpose of this analysis was to assess the sensitivity of input variables for the capsule thermal model. A series of cases were compared to a base case by varying different input parameters into the ABAQUS finite element thermal model. These input parameters were varied by ±10% to show the temperature sensitivity to each parameter. The most sensitive parameter was the compact heat rates, followed by the outer control gap distance and neon gas fraction. Thermal conductivity of the compacts and thermal conductivity of the various graphite layers vary with fast neutron fluence and exhibited moderate sensitivity. The least sensitive parameters were the emissivities of the stainless steel and graphite, along with gamma heat rate in the non-fueled components. Separate sensitivity calculations were performed varying with fast neutron fluence, showing a general temperature rise with an increase in fast neutron fluence. This is a result of the control gas gap becoming larger due to the graphite shrinkage with neutron damage. A smaller sensitivity is due to the thermal conductivity of the fuel compacts with fast neutron fluence.

Heat rates and fast neutron fluence were input from a detailed physics analysis using the Monte Carlo N-Particle (MCNP) code. Individual heat rates for each non-fuel component were input as well. A steady-state thermal analysis was performed for each sensitivity calculation. ATR outer shim control cylinders and neck shim rods along with driver fuel power and fuel depletion were incorporated into the physics heat rate calculations. Surface-to-surface radiation heat transfer along with conduction heat transfer through the gas mixture of helium-neon (used for temperature control) was used in the sensitivity calculations.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In