Full Content is available to subscribers

Subscribe/Learn More  >

Study of the Transient Behavior and Microstructure Degradation of a SOFC Cathode Using an Oxygen Reduction Model Based on Steepest-Entropy-Ascent Quantum Thermodynamics

[+] Author Affiliations
Guanchen Li, Michael R. von Spakovsky

Virginia Tech, Blacksburg, VA

Paper No. IMECE2015-53726, pp. V06BT07A016; 12 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5744-1
  • Copyright © 2015 by ASME


Oxygen reduction in a solid oxide fuel cell (SOFC) cathode involves a non-equilibrium process of coupled mass and heat diffusion and electrochemical and chemical reactions. These phenomena occur at multiple temporal and spatial scales, from the mesoscopic to the atomistic level, making the modeling, especially in the transient regime, very difficult. Nonetheless, multi-scale models are needed to improve an understanding of oxygen reduction and guide fuel cell cathode design. Existing methods are typically phenomenological or empirical in nature so their application is limited to the continuum realm and quantum effects are not captured.

Steepest-entropy-ascent quantum thermodynamics (SEAQT) can be used to model non-equilibrium processes (even those far-from equilibrium) from the atomistic to the macroscopic level. The non-equilibrium relaxation is characterized by the entropy generation, and the study of coupled heat and mass diffusion as well as electrochemical and chemical activity are unified into a single framework. This framework is used here to study the transient and steady state behavior of oxygen reduction in an SOFC cathode system. The result reveals the effects on performance of the different timescales of the varied phenomena involved and their coupling. In addition, the influence of cathode microstructure changes on performance is captured.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In