0

Full Content is available to subscribers

Subscribe/Learn More  >

The Simulation of Natural Ventilation of Buildings With Different Location of Windows/Openings

[+] Author Affiliations
A. Idris, B. P. Huynh, Z. Abdullah

University of Technology, Sydney, Sydney, Australia

Paper No. IMECE2015-51168, pp. V06BT07A006; 14 pages
doi:10.1115/IMECE2015-51168
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 6B: Energy
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5744-1
  • Copyright © 2015 by ASME

abstract

Ventilation is a process of changing air in an enclosed space. Air should continuously be withdrawn and replaced by fresh air from a clean external source to maintain internal good air quality, which may referred to air quality within and around the building structures. In natural ventilation the air flow is due through cracks in the building envelope or purposely installed openings. Its can save significant amount of fossil fuel based energy by reducing the needs for mechanical ventilation and air conditioning. Numerical predictions of air velocities and the flow patterns inside the building are determined. To achieve optimum efficiency of natural ventilation, the building design should start from the climatic conditions and orography of the construction to ensure the building permeability to the outside airflow to absorb heat from indoors to reduce temperatures. Effective ventilation in a building will affects the occupant health and productivity. In this work, computational simulation is performed on a real-sized box-room with dimensions 5 m × 5 m × 5 m. Single-sided ventilation is considered whereby openings are located only on the same wall. Two opening of the total area 4 m2 are differently arranged, resulting in 16 configurations to be investigated. A logarithmic wind profile upwind of the building is employed. A commercial Computational Fluid Dynamics (CFD) software package CFD-ACE of ESI group is used. A Reynolds Average Navier Stokes (RANS) turbulence model & LES turbulence model are used to predict the air’s flow rate and air flow pattern. The governing equations for large eddy motion were obtained by filtering the Navier-Stokes and continuity equations. The computational domain was constructed had a height of 4H, width of 9H and length of 13H (H=5m), sufficiently large to avoid disturbance of air flow around the building. From the overall results, the lowest and the highest ventilation rates were obtained with windward opening and leeward opening respectively. The location and arrangement of opening affects ventilation and air flow pattern.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In