Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Exergy-Based Analyses Applied to the Supercritical CO2 Power Cycles

[+] Author Affiliations
T. Morosuk, G. Tsatsaronis

Technische Universität Berlin, Berlin, Germany

Paper No. IMECE2015-50527, pp. V06AT07A028; 6 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 6A: Energy
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5743-4
  • Copyright © 2015 by ASME


The idea of developing supercritical CO2 power cycles and applying them to industrial processes became increasingly popular in the last decade. Significant research has been done in this field, including the investigation of characteristics of equipment, and parametric optimization of power systems. There are only few publications on refrigeration using CO2, under hot climatic conditions. This paper deals with an application of an integrated conventional and advanced exergetic analysis to a supercritical CO2 power cycle operating in hot climatic conditions. The objective is to obtain detailed useful information about the optimization of the structure and the parameters of the system being considered. Conventional exergetic analyses have some limitations, which are significantly reduced by the so-called advanced analyses. In addition to conventional analyses, the latter evaluate, (a) the interactions among components of the overall system, and (b) the real potential for improving a system component. A conventional exergetic analysis emphasizes more the relative importance of the regenerative heat exchanger compared to the remaining four components (compressor, cooler, expander, and heat exchanger) than the advanced analysis does. The results obtained from the advanced exergetic analysis show that the system being analyzed can be improved by improving the components in isolation from the overall system, because the avoidable inefficiencies caused by the components interconnections are relatively low.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In