Full Content is available to subscribers

Subscribe/Learn More  >

Hysteresis Modeling and Parameter Identification of an Encapsulated Piezoelectric Actuator

[+] Author Affiliations
Yang Zhang, Zhaobo Chen, Yinghou Jiao, Yuan Wei

Harbin Institute of Technology, Harbin, China

Paper No. IMECE2015-51360, pp. V04BT04A046; 7 pages
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 4B: Dynamics, Vibration, and Control
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5740-3
  • Copyright © 2015 by ASME


The hysteresis of the piezoelectric actuator possesses the rate-dependent characteristics, which significantly affects the precision and response speed of the piezoelectric actuators. That challenges to the traditional modeling and control techniques in micro-/nano-manipulation. The static and dynamic experiments are performed to validate the rates-dependent characteristics of our proposed encapsulated piezoelectric actuator, including the preload-dependent, frequency-dependent and amplitude-dependent characteristics. In order to accurately predict the EPA output hysteresis displacement with respect to the driving voltage, the Bouc-Wen model is proposed. The corresponding parameter identification method is established to identify the parameters of the proposed Bouc-wen model. To evaluate the effectiveness of the proposed model and parameter identification method, the experimental system is implemented. The results indicate that the output displacement predicted by proposed Bouc-Wen mathematics model can match the measured data very well. The maximal absolute, relative and normalization total errors of the proposed Bouc-wen model are 0.548um, 4.26% and 0.0583 respectively, which shows the proposed Bouc-Wen model can well describe the hysteretic characteristics of the piezoelectric actuator.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In