0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Analysis of Gas-Expanded Lubricants in a Hybrid Bearing Using Computational Fluid Dynamics

[+] Author Affiliations
Brian K. Weaver, Andres F. Clarens

University of Virginia, Charlottesville, VA

Gen Fu, Alexandrina Untaroiu

Virginia Tech, Blacksburg, VA

Paper No. IMECE2015-53735, pp. V04AT04A045; 8 pages
doi:10.1115/IMECE2015-53735
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 4A: Dynamics, Vibration, and Control
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5739-7
  • Copyright © 2015 by ASME

abstract

Gas-expanded lubricants (GELs), tunable mixtures of synthetic oil and dissolved carbon dioxide, have been previously shown to potentially increase bearing efficiency, rotordynamic control, and long-term reliability in flooded journal bearings by controlling the properties of the lubricant in real time. Previous experimental work has established the properties of these mixtures and multiple numerical studies have predicted that GELs stand to increase the performance of flooded bearings by reducing bearing power losses and operating temperatures while also providing control over bearing stiffness and damping properties. However, to date all previous analytical studies have utilized Reynolds equation-based approaches while assuming a single-phase mixture under high-ambient pressure conditions. The potential implications of multi-phase behavior could be significant to bearing performance, therefore a more detailed study of alternative operating conditions that may include multi-phase behavior is necessary to better understanding the full potential of GELs and their effects on bearing performance. In this work, the performance of GELs in a fixed geometry journal bearing were evaluated to examine the effects of these lubricants on the fluid and bearing dynamics of the system under varying operating conditions. The bearing considered for this study was a hybrid hydrodynamic-hydrostatic bearing to allow for the study of various lubricant supply and operating conditions. A computational fluid dynamics (CFD)-based approach allowed for a detailed evaluation of the lubricant injection pathway, the flow of fluid throughout the bearing geometry, thermal behavior, and the collection of the lubricant as it exits the bearing. This also allowed for the study of the effects of the lubricant behavior on overall bearing performance.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In