0

Full Content is available to subscribers

Subscribe/Learn More  >

Hydrogen Sulfide Sensing Using Lab-on-a-Chip Device for Biomedical and Environmental Use

[+] Author Affiliations
A. Baniya, S. Thapa, E. Borquist, D. Bailey, D. Wood, L. Weiss

Louisiana Tech University, Ruston, LA

J. Glawe, C. Kevil

LSU Health-Shreveport, Shreveport, LA

Paper No. IMECE2015-50984, pp. V003T03A074; 8 pages
doi:10.1115/IMECE2015-50984
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5738-0
  • Copyright © 2015 by ASME

abstract

Hydrogen sulfide (H2S) detection is an important capability for applications that range from environmental to biomedical use. In medical application, hydrogen sulfide may be an effective marker for various cardiovascular diseases. This work reports progress on H2S detection using a unique lab-on-a-chip device designed specifically for both environmental and biomedical applications. The chip consisted of three distinct layers of PEO/PDMS structures which have been bonded using various techniques including Reactive Ion Etching (RIE). First layer consisted of capillary channels to organize the flow of the sample. Also, liberation of the sulfide took place at this layer. The second layer was a H2S selective membrane. The third layer consisted of trapping chamber where trapped H2S samples were withdrawn for the quantification of H2S concentration. Fabrication of the first layer was accomplished using photolithography technique. Specifically, the chip incorporated unique design features and operation with advanced liberating chemistry that effectively released H2S from aqueous solutions introduced to the device. Mixture of poly-dimethylsiloxane-ethylene oxide polymeric (PDMS-b-PEO) and polydimethylsiloxane (PDMS) was cast on Su8 mold which produced super hydrophilic channels that allowed liquid flow via capillary action. The chip has been both fabricated and characterized as reported in this work. For each sample, 150 μL of the reaction volume was loaded in an HPLC vial and analyzed by a Shimadzu Prominence HPLC equipped with fluorescence detection and an eclipse XDB-C18 column. Sulfide transfer increased steadily at a rate of approximately 2% per minute until peaking at approximately 60% at 30 minutes. Percent transfer data show that sulfide diffused into the trapping chamber in a reproducible manner and that it was stable once it reached its peak at 30 minutes. Characterization and testing of the fully assembled device indicates significant promise and utility. Additional improvements may be made by optimizing parameters such as the decreasing ratio of the chamber volumes to the membrane area and the membrane thickness. The performance of this microfludic device was attributed to hydrophilic surface of PEO/PDMS, strong bonding of the chip using 3M transfer tape and well suited PDMS membrane that allow selective diffusion of hydrogen sulfide.

Copyright © 2015 by ASME
Topics: Hydrogen , Biomedicine

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In