0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Gravity on Human Lung Deformation

[+] Author Affiliations
Behnaz Seyfi Noferest, Olusegun J. Ilegbusi

University of Central Florida, Orlando, FL

Anand P. Santhanam

University of California, Los Angeles, Los Angeles, CA

Paper No. IMECE2015-52123, pp. V003T03A048; 8 pages
doi:10.1115/IMECE2015-52123
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 3: Biomedical and Biotechnology Engineering
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5738-0
  • Copyright © 2015 by ASME

abstract

The effect of gravity is considered on biomechanical modeling of human lung deformation for radiotherapy application. The lung is assumed to behave as a poro-elastic medium with spatially dependent property. Finite element simulation is performed on a three-dimensional (3D) lung geometry reconstructed from four-dimensional computed tomography (4DCT) scan dataset of real human patient. The spatially-dependent Young’s modulus (YM) values are estimated using inverse analysis from a linear elastic deformation model. First, the gravity-generated deformation in the lung is calculated. Next, inlet pressure loading is applied at the hilium from an initial stress-free resting volume. Then, the lung model is preloaded by its weight, followed by prescription of the inlet pressure. In each case the maximum and minimum deformation of selected landmarks are monitored with and without gravity. The results show that gravity indeed significantly affects the magnitude and distribution of lung deformation. The maximum displacement increases by 54% in the direction of gravity when it is considered in the model.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In