0

Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Error Modeling and Prediction of a Heavy Floor-Type Milling and Boring Machine Tool

[+] Author Affiliations
Fengchun Li, Tiemin Li, Haitong Wang

Tsinghua University, Beijing, China

Paper No. IMECE2015-53169, pp. V02AT02A043; 8 pages
doi:10.1115/IMECE2015-53169
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 2A: Advanced Manufacturing
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5735-9
  • Copyright © 2015 by ASME

abstract

Thermal error modeling and prediction of a heavy floor-type milling and boring machine tool was studied in this paper. An FEA model and a thermal network of the machine tool’s ram was established. The influence of boundary conditions on thermal error was studied to find out the boundary conditions that needn’t to be calculated precisely, reducing the time cost of the work. Superposition principle of heat sources was used in the FEA to get the simulation data of thermal error and temperature. A model based on the simulation data was established to predict the thermal error during the work process. An experiment was performed to verify the accuracy of the model. The result shows that the model accuracy is 87%. The method in this paper is expected to be used in engineering application.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In