0

Full Content is available to subscribers

Subscribe/Learn More  >

Determination of Anisotropy Parameters via the Optimization Process of V-Bending

[+] Author Affiliations
F. Ozturk

The Petroleum Institute, Abu Dhabi, UAE

S. Toros

Nigde University, Nigde, Turkey

Paper No. IMECE2015-53355, pp. V02AT02A036; 6 pages
doi:10.1115/IMECE2015-53355
From:
  • ASME 2015 International Mechanical Engineering Congress and Exposition
  • Volume 2A: Advanced Manufacturing
  • Houston, Texas, USA, November 13–19, 2015
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5735-9
  • Copyright © 2015 by ASME

abstract

In recent years, the use of optimization methods in sheet metal forming has been increased remarkably. In the finite element simulation of the sheet metal stamping operations, the model parameters are determined from the several tests like tensile, compression, and biaxial stretching tests (bulge test). In this study, Yld2000-2d anisotropic yield function parameters are determined for DP800 advanced high strength steel using a 60° V-shaped die bending process. The difference between the simulation and experiment is found to be 1 degree using the classical determination method of the anisotropy parameters. The difference is 0.1 degree using the optimization method.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In