0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Analysis of Simplex Atomizer Spray and Swirling Flow Interactions in Unconfined Conditions

[+] Author Affiliations
Muthu Selvan, Muralidhara Suryanarayana Rao, Vinod Kumar Vyas, Sivakumar Neelakandan

CSIR – NAL, Bangalore, India

Indu Kharb

MRIU, Faridabad, India

Sundararajan Thirumalachari

IITM, Chennai, India

Paper No. GTINDIA2015-1347, pp. V001T03A007; 7 pages
doi:10.1115/GTINDIA2015-1347
From:
  • ASME 2015 Gas Turbine India Conference
  • ASME 2015 Gas Turbine India Conference
  • Hyderabad, India, December 2–3, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5731-1
  • Copyright © 2015 by ASME

abstract

An experimental study has been conducted to investigate the interaction between the conical spray produced by simplex atomizer and the swirling flow from an axial swirler. This work has been carried out in an unconfined ambience at isothermal conditions, using water. Malvern spray analyzer with a three dimensional traverse is used to characterize the swirling flow and spray interactions at various axial and radial locations. Images of spray at different conditions of air and water mass flow rates have been analyzed. Increasing the air mass flow through swirler at constant water flow rate, changes the spray structure significantly. These structural changes are sudden and highly dependent on the initial conditions of the spray. At smaller air flow rates, single-mode droplet size distribution at mid-plane changes into a bi-modal distribution at an air flow rate of about 35 kg/hr, with higher contribution of larger droplets. With further increase in air flow rate (90, 110 and 130 kg/hr), the bi-modal size distribution is maintained but with a larger volumetric fraction of small droplets. At different axial distances, the droplet size distributions are similar (single mode and bimodal distributions depending on air flow rate). But volume percentage of larger droplets is less compared to those of smaller droplets, at larger axial distance. At outer radial locations of the spray, volume percentage of larger droplets reduces and that of smaller droplets increases significantly, due to secondary droplet breakup. The interaction between the swirl and spray causes droplets to move radially outwards, resulting in droplet break-up by impact on the dome. Cases with higher air to water flow ratios exhibit significant changes in drop size distribution due to such swirl-spray interactions.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In