0

Full Content is available to subscribers

Subscribe/Learn More  >

Flame Investigation of a Gas Turbine Central Pilot Body Burner at Atmospheric Pressure Conditions Using OH PLIF and High-Speed Flame Chemiluminescence Imaging

[+] Author Affiliations
Arman Ahamed Subash, Ronald Whiddon, Robert Collin, Marcus Aldén, Atanu Kundu, Jens Klingmann

Lund University, Lund, Sweden

Paper No. GTINDIA2015-1212, pp. V001T03A001; 12 pages
doi:10.1115/GTINDIA2015-1212
From:
  • ASME 2015 Gas Turbine India Conference
  • ASME 2015 Gas Turbine India Conference
  • Hyderabad, India, December 2–3, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5731-1
  • Copyright © 2015 by ASME

abstract

Experiments were performed on the central pilot body (RPL-rich-pilot-lean) of Siemens prototype 4th generation DLE burner to investigate the flame behavior at atmospheric pressure condition when varying equivalence ratio, residence time and co-flow temperature. The flame at the RPL burner exit was investigated applying OH planar laser-induced fluorescence (PLIF) and high-speed chemiluminescence imaging. The results from chemiluminescence imaging and OH PLIF show that the size and shape of the flame are clearly affected by the variation in operating conditions. For both preheated and non-preheated co-flow cases, at lean equivalence ratios combustion starts early inside the burner and primary combustion comes to near completion inside the burner if residence time permits. For rich conditions, the unburnt fuel escapes out through the burner exit along with primary combustion products and combustion subsequently restarts downstream the burner at leaner condition and in a diffuse-like manner. For preheated co-flow, most of the operating conditions yield similar OH PLIF distributions and the flame is stabilizing at approximately the same spatial positions. It reveals the importance of the preheating co-flow for flame stabilization. Flame instabilities were observed and Proper Orthogonal Decomposition (POD) is applied to time resolved chemiluminescence data to demonstrate how the flame is oscillating. Preheating has strong influence on the oscillation frequency. Additionally, combustion emissions were analyzed to observe the effect on NOX level for variation in operating conditions.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In