0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation on Effect of Aspect Ratio of Axisymmetric Circumferential Groove Casing Treatment Coupled to a Transonic Axial Flow Compressor Stage

[+] Author Affiliations
Nishit J. Mehta, Harish S. Choksi

Maharaja Sayajirao University of Baroda, Vadodara, India

Dilipkumar Bhanudasji Alone

Propulsion Division, CSIR-NAL, Bangalore, India

Paper No. GTINDIA2015-1207, pp. V001T01A002; 13 pages
doi:10.1115/GTINDIA2015-1207
From:
  • ASME 2015 Gas Turbine India Conference
  • ASME 2015 Gas Turbine India Conference
  • Hyderabad, India, December 2–3, 2015
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5731-1
  • Copyright © 2015 by ASME

abstract

While the effects of axisymmetric casing treatment on performance of an axial compressor stage have been extensively studied numerically as well as experimentally, the major geometrical parameters which govern these effects have been identified. Studies are now focused on understanding how each of these parameters individually impacts the performance of a casing treatment.

The present work aims to study the impact on performance of casing treatment geometry when aspect ratio of the grooves is varied in a circumferential groove casing treatment. The compressor geometry chosen for this study has design characteristics of a transonic compressor stage. Flow field solutions were derived for baseline model by solving steady state 3-D Reynolds-Averaged Navier-Stokes (RANS) equations for three grid densities and the grid independence was proved. The basic casing treatment geometry has 10 circumferential grooves of width 4mm and axial spacing of 2mm between each groove. The aspect ratio was varied by changing the depth of the grooves in each case. These casing treatment geometries were superimposed over the rotor domain with the grooves extending over the entire blade tip chord and flow field solutions were again obtained for various aspect ratios of grooves.

These results depict improvement in the range of operation in terms of mass flow rate. Results also show that the aspect ratio of the grooves significantly influences the overall effectiveness of casing treatment on the performance of compressor stage. Improvement in overall compressor efficiency is noted with lower aspect ratio casing treatments when compared to those with higher aspect ratios, however, the range improvement is higher with higher aspect ratios. It is also observed that, after a certain depth of grooves is reached, there is no significant improvement in performance on further increasing the depth and hence the aspect ratio.

Post processing results of the flow solutions are presented which confirm the trends and show that the flow behavior near rotor tip governs this effect.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In