0

Full Content is available to subscribers

Subscribe/Learn More  >

Research on Tooth Profile Modification of the Herringbone Planetary Gear Train

[+] Author Affiliations
Heyun Bao, Huan Liu, Rupeng Zhu, Fengxia Lu, Miaomiao Li

Nanjing University of Aeronautics and Astronautics, Nanjing, China

Paper No. DETC2015-46821, pp. V010T11A020; 7 pages
doi:10.1115/DETC2015-46821
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 10: ASME 2015 Power Transmission and Gearing Conference; 23rd Reliability, Stress Analysis, and Failure Prevention Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5720-5
  • Copyright © 2015 by ASME

abstract

A bending-torsional coupled nonlinear dynamic model which contains the modification parameters of herringbone planetary gear train is presented. A formula of modification incentive is analyzed and deduced. The impact of the straight line and parabolic modification parameters on the amplitude of system transmission error is researched. The optimum modification parameters are acquired according to the minimum amplitude of system transmission error. Different amplitudes of the system transmission error, before and after modification, are compared at different rotational speed. The results indicate that the straight line modification parameters on the amplitude of system transmission error are more sensitive. Modification parameters on the amplitude of system transmission error are researched. When the length of the modification is specified, the amplitude of system transmission error is reduced sharply at first, then increased rapidly with the maximum magnitude of the modification increasing; When the maximum magnitude of the modification is specified, the amplitude of system transmission error is increased weakly at first, then decreased sharply, and increased rapidly in the end, with the length of the modification increasing. The modification parameters could form a crescent-shaped zone which can reduce the system transmission error amplitude significantly. The amplitudes of the system transmission error with modification are all reduced at different rotational speed, especially when there is a sympathetic vibration.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In