Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Durable Air-Muscle With Integrated Sensor for Soft Robotics

[+] Author Affiliations
Geneviève Miron, Jean-Sébastien Plante

Université de Sherbrooke, Sherbrooke, QC, Canada

Paper No. DETC2015-47872, pp. V009T07A088; 9 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5719-9
  • Copyright © 2015 by ASME


Soft robotics integrates compliant actuators and sensors that expand design possibilities beyond classic robotics based on rigid modular components. In particular, deformable elastomer-based actuators used in soft robots, such as air-muscles, offer the possibility of having large numbers of embedded degrees of freedom. However, air-muscles fatigue life and strain capability call for a tradeoff, limiting their practical use in demanding applications such as physical rehabilitation, medical robotics, and mobile robots. This paper presents the design of a durable high-strain air-muscle composed of a silicone tube and an axially elastic sleeve (radially rigid), which integrates a flexible Dielectric Elastomer (DE) position sensor. The uniformity of the sleeve, by opposition to usual braids, makes for a reinforcement without local stresses that cause membrane failure. Designed based on fatigue failure principles, this air-muscle withstands 145 000 cycles at 50 % elongation, which demonstrates its potential as a durable high-strain actuator. Performance maps of the air-muscle confirm good linearity between force, pressure and strain and demonstrate bi-directional force capability. Furthermore, the integration of a DE sensor allows for accurate position control of the air-muscle (0.17 mm), making the air-muscle/sensor unit a relevant building block for complex soft robotics systems. The all-polymer high-strain actuator/sensor unit proves to be accurate and durable as well as cost-effective, thus making it ideal for soft robotics applications requiring large numbers of actuators and integrated sensing.

Copyright © 2015 by ASME
Topics: Sensors , Design , Robotics , Muscle



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In