Full Content is available to subscribers

Subscribe/Learn More  >

Development of a Compliant-Mechanism-Based Compact Three-Axis Force Sensor for High-Precision Manufacturing

[+] Author Affiliations
Guangbo Hao, Marc Murphy

University College Cork, Cork, Ireland

Xichun Luo

University of Strathclyde, Glasgow, UK

Paper No. DETC2015-46166, pp. V009T07A082; 10 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5719-9
  • Copyright © 2015 by ASME


This paper develops a light-weight compact three-axis force senor for high-precision manufacturing application. This sensor uses a cubic three-axial translational compliant parallel mechanism to undergo the loading on its end-effector thereby producing voltages through strain gauges on the deformed beams. The cubic compliant parallel mechanism and sensor system are described at first. Force sensing theoretical analysis is then presented followed by the initial experimental testing and analysis. A linear matrix based multi-axis loading decoupling method is also proposed so that the sensed force can maximally reflect the actual applied force in each axis. The work in this paper is expected to lay a foundation for further investigation into the online force sensing in the high-precision machine tool.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In