0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Characterization of a Meso-Scale Combustion Driven Actuator Designed for High Efficiency

[+] Author Affiliations
Alexandre Bélanger Desbiens, Jean-Sébastien Plante, Patrice Masson

Université de Sherbrooke, Sherbrooke, QC, Canada

Paper No. DETC2015-47845, pp. V009T07A077; 9 pages
doi:10.1115/DETC2015-47845
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5719-9
  • Copyright © 2015 by ASME

abstract

Meso-scale power systems (10 W to 1000 W) are needed to power untethered mobile robots and assisting devices such as powered exoskeletons. Air-breathing combustion driven actuators, used in a direct acting manner, can be used for such applications and take advantage of the high power density of fluidic actuators and the high energy density of chemical fuels. However, fuel-to-mechanical energy conversion efficiency is critical to make such chemical systems viable over electrical systems. This paper presents the efficiency-based design and experimental characterization of two combustion driven actuators intended to reach high specific power and specific energy. First, efficiency oriented design principles are derived from internal combustion engine theory: (1) an ideal-cycle thermodynamic model of a generic constant volume combustion system suggests that compression ratio and the expansion/compression ratio should both be maximized, and (2) the practical effects of heat, mass and friction losses as well as fuel choice in a small scale combustion chamber context are discussed. Second, two simplified prototypes are built and tested. The first prototype uses a rolling diaphragm seal to limit the effect of mass and friction losses. The second prototype consists of a standard air cylinder that minimizes heat losses by reducing the surface-to-volume ratio of the combustion chamber. Hydrogen is selected as fuel because it allows lean combustion which limits the effect of heat loss with low combustion temperatures. Compression ratio and equivalence ratio are varied experimentally to evaluate their effect on efficiency. Experimental results demonstrate an energy conversion efficiency of 15.3% at a compression ratio of 4.15 and a low equivalence ratio of 0.3. Ragone analysis of relevant meso-scale power systems for mobile robotic suggest that, with proper optimization and system integration, combustion driven power systems can become a viable solution for lightweight and long range meso-scale robotic applications.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In