0

Full Content is available to subscribers

Subscribe/Learn More  >

Radial Basis Function Methods for Fractional Derivative Applications

[+] Author Affiliations
Zhuo-Jia Fu

Hohai University, Nanjing City, Jiangsu, China

Paper No. DETC2015-48016, pp. V009T07A047; 5 pages
doi:10.1115/DETC2015-48016
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5719-9
  • Copyright © 2015 by ASME

abstract

In recent decades, the theoretical researches and experimental results show that fractional derivative model can be a powerful tool to describe the contaminant transport through complex porous media and the dynamic behaviors of real viscoelastic materials. Consequently, growing attention has been attracted to numerical solution of fractional derivative model. Radial basis function (RBF) meshless technique is one of the most popular and powerful numerical methods, which are mathematically simple, and avoid troublesome mesh generation for high-dimensional problems involving irregular or moving boundary. Recently, RBF-based meshless methods, such as the Boundary Particle Method and the Method of Approximate Particular Solutions, have been successfully applied to fractional derivative problems. The Boundary Particle Method is one of truly boundary-only RBF collocation schemes, which employs both the semi-analytical basis functions to approximate the FDE solutions. Inspired by the boundary collocation RBF techniques, the Method of Approximate Particular Solutions is one of the domain-type RBF collocation schemes with easy-to-use merit, which employs the particular solution RBFs for the solution of FDEs. This study will make a numerical investigation on the abovementioned RBF meshless methods to fractional derivative problems. The convergence rate, numerical accuracy and stability of these schemes will be examined through several benchmark examples.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In