0

Full Content is available to subscribers

Subscribe/Learn More  >

Fractional Sturm-Liouville Problem and 1D Space-Time Fractional Diffusion With Mixed Boundary Conditions

[+] Author Affiliations
Malgorzata Klimek

Czestochowa University of Technology, Czestochowa, Poland

Paper No. DETC2015-46808, pp. V009T07A034; 7 pages
doi:10.1115/DETC2015-46808
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 9: 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5719-9
  • Copyright © 2015 by ASME

abstract

In the paper, we show a connection between a regular fractional Sturm-Liouville problem with left and right Caputo derivatives of order in the range (1/2, 1) and a 1D space-time fractional diffusion problem in a bounded domain. Both problems include mixed boundary conditions in a finite space interval. We prove that in the case of vanishing mixed boundary conditions, the Sturm-Liouville problem can be rewritten in terms of Riesz derivatives. Then, we apply earlier results on its eigenvalues and eigenfunctions to construct a weak solution of the 1D fractional diffusion equation with variable diffusivity. Adding an assumption on the summability of the eigenvalues’ inverses series, we formulate a theorem on a strong solution of the 1D fractional diffusion problem.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In