0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Analytical Study of Coriolis Effects in Bladed Disk

[+] Author Affiliations
Valentina Ruffini, Christoph Schwingshackl

Imperial College London, London, UK

Jeff Green

Rolls-Royce plc, Derby, UK

Paper No. DETC2015-46621, pp. V008T13A070; 10 pages
doi:10.1115/DETC2015-46621
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 8: 27th Conference on Mechanical Vibration and Noise
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5718-2
  • Copyright © 2015 by Rolls-Royce plc

abstract

Modern aero-engines have reached a high level of sophistication and only significant changes will lead to the improvements necessary to achieve the economic and environmental targets of the future. Open rotors constitute a major leap in this direction, both in terms of efficiency and of technological innovation. This calls for a revision of the accepted design practices, and a new focus on phenomena that have been little investigated in the past, such as the Coriolis effect, or the gyroscopic coupling of the blades with the shaft. Experimental results from modern fans, with large blades and strong stagger angles, are showing dependence on Coriolis gyroscopic effects already, an effect that is expected to be strongly enhanced with the proposed open rotor designs.

For an accurate prediction of the Coriolis and gyroscopic effects in rotating assemblies a fully experimentally validated approach is needed. Today’s FE models can capture the basic physical phenomena, but experimental confirmation is still needed for the evolution of the mode shapes with angular speed, and the influence of damping and geometric nonlinearities when gyroscopic coupling is considered. To support this validation effort a new rotating test rig will be introduced, initial measurement data will be discussed, and a comparison with a finite element analysis presented.

Different forcing patterns, including forward and backward travelling-wave engine order excitation could be experimentally excited in the new rig, Coriolis-induced frequency splits were found in the dynamic response, showing a significant change in the dynamic behaviour of the investigated dummy disk, and only a minor impact of the mistuning was observed on the frequency splits due to Coriolis effects. The experimental results have been compared to a finite element analysis, and after some updating a good agreement between the predicted and measured Campbell diagrams could be obtained, demonstrating the reliability of the modelling approach.

Copyright © 2015 by Rolls-Royce plc
Topics: Coriolis force , Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In