0

Full Content is available to subscribers

Subscribe/Learn More  >

Coupled Multibody Dynamics and Smoothed Particle Hydrodynamics for Modeling Vehicle Water Fording

[+] Author Affiliations
Tamer M. Wasfy

Indiana University - Purdue University Indianapolis, Indianapolis, IN

Hatem M. Wasfy, Jeanne M. Peters

Advanced Science and Automation Corp., Indianapolis, IN

Paper No. DETC2015-47142, pp. V006T10A076; 15 pages
doi:10.1115/DETC2015-47142
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

Multibody dynamics and smoothed particle hydrodynamics (SPH) are integrated into one solver for predicting the water fording dynamic response of ground vehicles. Multibody dynamics models are used for the various vehicle systems including: suspension system, wheels, steering system, axles, differential, and engine. A penalty technique is used to impose joint and normal contact constraints (between the tires and ground, and between the tires/vehicle body and the fluid particles). An asperity-based friction model is used to model joint and contact friction. Water is modeled using an SPH particle-based approach along with a large eddy-viscosity turbulence model. A contact search algorithm that uses a Cartesian Eulerian grid around the water pool is used to allow fast contact detection between particles. A recursive bounding box contact search algorithm is used to allow fast contact detection between polygonal contact surfaces (representing the tires and vehicle body) and the fluid particles. The governing equations of motion for the solid bodies and the fluid particles are solved along with joint/constraint equations using a time-accurate explicit solution procedure. The integrated solver is used to predict the dynamic response of a Humvee-type vehicle moving through a shallow water pool.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In