0

Full Content is available to subscribers

Subscribe/Learn More  >

Skateboard: A Human Controlled Non-Holonomic System

[+] Author Affiliations
Balazs Varszegi, Gabor Stepan

Budapest University of Technology and Economics, Budapest, Hungary

Denes Takacs

MTA-BME Research Group on Dynamics of Machines and Vehicles, Budapest, Hungary

Paper No. DETC2015-47512, pp. V006T10A066; 6 pages
doi:10.1115/DETC2015-47512
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

A simple mechanical model of the skateboard-skater system is analyzed, in which a linear PD controller with delay is included to mimic the effect of human control. The equations of motion of the non-holonomic system are derived with the help of the Gibbs-Appell method. The linear stability analysis of rectilinear motion is carried out analytically using the D-subdivision method. It is shown how the control gains have to be varied with respect to the speed of the skateboard in order to stabilize the uniform motion. The critical reflex delay of the skater is determined as a function of the speed and the fore-aft location of the skater on the board. Based on these, an explanation is given for the well-known instability of the skateboard-skater system at high speed.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In