0

Full Content is available to subscribers

Subscribe/Learn More  >

Unstable Oscillations and Wave Propagation in Flagella

[+] Author Affiliations
Philip V. Bayly, Kate S. Wilson

Washington University, Saint Louis, MO

Paper No. DETC2015-46920, pp. V006T10A053; 7 pages
doi:10.1115/DETC2015-46920
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

Flagella are active, beam-like, sub-cellular organelles that use wavelike oscillations to propel the cell. The mechanisms underlying the coordinated beating of flagella remain incompletely understood despite the fundamental importance of these organelles. The axoneme (the cytoskeletal structure of flagella) consists of microtubule doublets connected by passive and active elements. The motor protein dynein is known to drive active bending, but dynein activity must be regulated to generate oscillatory, propulsive waveforms. Mathematical models of flagella motion generate quantitative predictions that can be analyzed to test hypotheses concerning dynein regulation. Here we investigate the emergence of unstable modes in a mathematical model of flagella motion with feedback from inter-doublet separation (the “geometric clutch” or GC model). The unstable modes predicted by the model may be used to critically evaluate the underlying hypothesis. The least stable mode of the GC model exhibits switching at the base and robust base-to-tip propagation.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In