0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Vibration Absorber Design: An Asymptotic Approach

[+] Author Affiliations
Arnaldo Casalotti, Walter Lacarbonara

Sapienza University of Rome, Rome, Italy

Paper No. DETC2015-46463, pp. V006T10A050; 6 pages
doi:10.1115/DETC2015-46463
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

The one-to-one internal resonance occurring in a two-degree-of-freedom (2DOF) system composed by a damped non-linear primary structure coupled with a nonlinear vibration absorber is studied via the method of multiple scales up to higher order (i.e., the first nonlinear order beyond the internal/external resonances). The periodic response predicted by the asymptotic approach is in good agreement with the numerical results obtained via continuation of the periodic solution of the equations of motion. The asymptotic procedure lends itself to manageable sensitivity analyses and thus to versatile optimization by which different optimal tuning criteria for the vibration absorber can possibly be found in semi-closed form.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In