0

Full Content is available to subscribers

Subscribe/Learn More  >

Formulations of Viscoelastic Constitutive Laws for Beams in Flexible Multibody Dynamics

[+] Author Affiliations
Olivier A. Bauchau

The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Zijing Lao

University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai, China

Joachim Linn

Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany

Paper No. DETC2015-47233, pp. V006T10A032; 10 pages
doi:10.1115/DETC2015-47233
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

It is often necessary to consider material dissipation effects in structural dynamics analysis. A novel three-dimensional viscoelastic beam formulation is proposed. A systematic procedure is proposed to incorporate existing viscoelastic material models into beam theories. The generalized Maxwell model is used to demonstrate the procedure. Starting from a three-dimensional beam theory, classical material viscoelastic constitutive laws are used to develop viscoelastic beam models for flexible multibody dynamics. In contrast with classical beam theories, the proposed beam formulation captures three-dimensional stress and strains distributions based on a novel dimensional reduction method, and models dissipative phenomena at the same time. All cross-sectional deformation modes are considered in the formulation. With the generalized Maxwell model, the formulation is valid for a broad range of frequencies. Because it is based on a three-dimensional formulation, the proposed approach uses a decomposition of the strain tensor into bulk and deviatoric components, thereby eliminating Poisson locking effects. This is particularly important because many highly dissipative materials are also nearly incompressible. Numerical examples are presented to illustrate these characteristics. Because the formulation developed is a beam model, it is computationally efficient and can be used for the simulation of flexible multibody dynamics systems.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In