0

Full Content is available to subscribers

Subscribe/Learn More  >

Use of ANCF Finite Elements in MBS Textile Applications

[+] Author Affiliations
Liang Wang, Antonio M. Recuero, Ahmed A. Shabana

University of Illinois at Chicago, Chicago, IL

Yongxing Wang

Donghua University, Shanghai, China

Paper No. DETC2015-46330, pp. V006T10A027; 12 pages
doi:10.1115/DETC2015-46330
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

The objective of this investigation is to present a new flexible multibody system (MBS) approach for modeling textile roll-drafting sets used in chemical textile industry. The proposed approach can be used in the analysis of textile materials which have un-common material properties best described by specialized continuum mechanics constitutive models, for instance, the lubricated polyester filament bundles (PFB) presented in this paper. In this investigation, PFB is modeled as a hyper-elastic transversely isotropic material using absolute nodal coordinate formulation (ANCF). The PFB strain energy density function is decomposed into a fully isotropic component and an orthotropic, transversely isotropic component expressed in terms of five invariants of the right Cauchy-Green deformation tensor. Using this energy decomposition, the second Piola-Kirchhoff stress and the elasticity tensors can also be split into isotropic and transversely isotropic parts. Constitutive equations are used to evaluate the generalized material forces associated with the coordinates of three-dimensional fully-parameterized ANCF finite elements. The proposed model allows for modeling the dynamic interaction between the rollers and PFB and allows for using spline functions to specify the PFB forward velocity. The paper demonstrates that the textile material constitutive equations and the MBS algorithms can be used effectively to obtain numerical solutions that define the state of strain of the textile material and the relative slip between rollers and PFB and therefore provide a good method to study the roll-drafting process in the chemical textile industry.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In