0

Full Content is available to subscribers

Subscribe/Learn More  >

Forward Kinematic Analysis of Non-Deterministic Articulated Multibody Systems With Kinematically Closed-Loops in Polynomial Chaos Expansion Scheme

[+] Author Affiliations
Sahand Sabet, Mohammad Poursina

University of Arizona, Tucson, AZ

Paper No. DETC2015-46848, pp. V006T10A017; 12 pages
doi:10.1115/DETC2015-46848
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 11th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5716-8
  • Copyright © 2015 by ASME

abstract

This paper presents the method of polynomial chaos expansion (PCE) for the forward kinematic analysis of nondeterministic multibody systems with kinematically closed-loops. The PCE provides an efficient mathematical framework to introduce uncertainty to the system. This is accomplished by compactly projecting each stochastic response output and random input onto the space of appropriate independent orthogonal polynomial base functions. This paper presents the detailed formulation of the kinematics of a constrained multibody system at the position, velocity, and acceleration levels in the PCE scheme. This analysis is performed by projecting the governing kinematic constraint equations of the system onto the space of appropriate polynomial base functions. Furthermore, forward kinematic analysis is conducted at the position, velocity, and acceleration levels for a non-deterministic four-bar mechanism with single and multiple uncertain parameters in the length of linkages of the system. Time efficiency and accuracy of the intrusive PCE approach are compared with the traditionally used Monte Carlo method. The results demonstrate the drastic increase in the computational time of Monte Carlo method when analyzing complex systems with a large number of uncertain parameters while the intrusive PCE provides better accuracy with much less computation complexity.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In