0

Full Content is available to subscribers

Subscribe/Learn More  >

Design Methodologies for Soft-Material Robots Through Additive Manufacturing, From Prototyping to Locomotion

[+] Author Affiliations
Eliad Cohen, Stephen McCarthy

University of Massachussetts, Lowell, MA

Vishesh Vikas, Barry Trimmer

Tufts University, Medford, MA

Paper No. DETC2015-47507, pp. V05BT08A015; 9 pages
doi:10.1115/DETC2015-47507
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5713-7
  • Copyright © 2015 by ASME

abstract

Soft material robots have gained interest in recent years due to the mechanical potential of non-rigid materials and technological development in the additive manufacturing (3D printing) techniques. The incorporation of soft materials provides robots with potential for locomotion in unstructured environments due to the conformability and deformability properties of the structure. Current additive manufacturing techniques allow multimaterial printing which can be utilized to build soft bodied robots with rigid-material inclusions/features in a single process, single batch (low manufacturing volumes) thus saving on both design prototype time and need for complex tools to allow multimaterial manufacturing. However, design and manufacturing of such deformable robots needs to be analyzed and formalized using state of the art tools.

This work conceptualizes methodology for motor-tendon actuated soft-bodied robots capable of locomotion. The methodology relies on additive manufacturing as both a prototyping tool and a primary manufacturing tool and is categorized into body design & development, actuation and control design. This methodology is applied to design a soft caterpillar-like biomimetic robot with soft deformable body, motor-tendon actuators which utilizes finite contact points to effect locomotion. The versatility of additive manufacturing is evident in the complex designs that are possible when implementing unique actuation techniques contained in a soft body robot (Modulus discrepancy); For the given motor-tendon actuation, the hard tendons are embedded inside the soft material body which acts as both a structure and an actuator. Furthermore, the modular design of soft/hard component coupling is only possible due to this manufacturing technique and often eliminates the need for joining and fasteners. The multi-materials are also used effectively to manipulate friction by utilizing soft/hard material frictional interaction disparity.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In