Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Passively-Adaptive Three Degree-of-Freedom Multi-Legged Robot With Underactuated Legs

[+] Author Affiliations
Oren Y. Kanner, Nicolás Rojas, Aaron M. Dollar

Yale University, New Haven, CT

Paper No. DETC2015-47867, pp. V05AT08A062; 9 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


This paper discusses the design of a three degree-of-freedom (3-DOF) non-redundant walking robot with decoupled stance and propulsion locomotion phases that is exactly constrained in stance and utilizes adaptive underactuation to robustly traverse terrain of varying ground height. Legged robots with a large number of actuated degrees of freedom can actively adapt to rough terrain but often end up being kinematically overconstrained in stance, requiring complex redundant control schemes for effective locomotion. Those with fewer actuators generally use passive compliance to enhance their dynamic behavior at the cost of postural control and reliable ground clearance, and often inextricably link control of the propulsion of the robot with control of its posture. In this paper we show that the use of adaptive underactuation techniques with constraint-based design synthesis tools allows for lighter and simpler lower mobility legged robots that can adapt to the terrain below them during the swing phase yet remain stable during stance and that the decoupling of stance and propulsion can greatly simplify their control. Simulation results of the swing phase behavior of the proposed 3-DOF decoupled adaptive legged robot as well as proof-of-concept experiments with a prototype of its corresponding stance platform are presented and validate the suggested design framework.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In