Full Content is available to subscribers

Subscribe/Learn More  >

Robotic Neuromuscular Facilitation for Regaining Neural Activation in Hemiparetic Limbs

[+] Author Affiliations
Jun Ueda, Lauren Lacey, Melih Turkseven, Minoru Shinohara, Ilya Kovalenko, Euisun Kim, Fatiesa Sulejmani

Georgia Institute of Technology, Atlanta, GA

Paper No. DETC2015-48085, pp. V05AT08A050; 10 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


This paper introduces an effective engineered rehabilitation system for understanding and inducing functional recovery of hemiparetic limbs based on the concept of timing-dependent induction of neural plasticity. Limb motor function is commonly impaired after neurologic injury such as stroke, with hemiparesis being one of the major impairments. In an emerging unique intervention for hemiparesis, named repetitive facilitation exercise, or RFE, a therapist manually applies brief mechanical stimuli to the peripheral target muscles (e.g., tapping, stretching of tendon/muscle) immediately before a patient intends to produce a movement with the muscle. The practice of this rehabilitation procedure by a skilled therapist often leads to dramatic rehabilitation outcomes. However, unskilled therapists, most likely due to the inaccuracy of the timing of peripheral stimulation in reference to the intention of movement (i.e. motor command), are unable to recreate the same rehabilitation results. Robotic rehabilitation, on the other hand, can improve the reliability and efficacy of the operation by satisfying the timing precision required by the therapy. This study demonstrates the use of a pneumatically-driven MRI-compatible robot for RFE assessment. The pressure dynamics of the system is studied for an accurate estimation on the time of response of the robot. The required temporal precision of the therapy is obtained and the use of the device is validated through experiments on a human subject.

Copyright © 2015 by ASME
Topics: Robotics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In