Full Content is available to subscribers

Subscribe/Learn More  >

Design and Fabrication of a Soft Robotic Direct Cardiac Compression Device

[+] Author Affiliations
Ellen T. Roche, Markus A. Horvath, Ali Alazmani, Kevin C. Galloway, David J. Mooney, Conor J. Walsh

Harvard University, Cambridge, MA

Nikolay V. Vasilyev, Frank A. Pigula

Children’s Hospital Boston, Boston, MA

Paper No. DETC2015-47355, pp. V05AT08A042; 10 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


A direct cardiac compression (DCC) device is an active sleeve that is surgically placed around the heart to help the failing heart to pump without contacting blood. Soft robotic techniques enable fabrication of a conformable DCC device containing modular actuators oriented in a biomimetic manner that can restore the natural motion of the heart and provide tunable active assistance. In this paper we describe the fabrication of a DCC device; the optimization of pneumatic actuators, their integration into a matrix with a modulus in the range of cardiac tissue and methods to affix this device to the heart wall. Pneumatic air muscles (PAMs) were fabricated using a modified McKibben technique and four types of internal bladders; low durometer silicone tubes molded in-house, polyester terephthalate (PET) heat shrink tubing, nylon medical balloons and thermoplastic urethane (TPU) balloons thermally formed in-house. Balloons were bonded to air supply lines, placed inside a braided nylon mesh with a 6.35mm resting diameter and bonded at one end. When pressurized to 145kPa silicone tubes failed and PET, nylon and TPU actuators generated isometric axial forces of 14.28, 19.65 and 19.05N respectively, with axial contractions of 33.11, 28.69 and 37.54%. Circumferential actuators placed around the heart reduced the cross-sectional area by 33.34% and 50.63% for silicone and TPU actuators respectively. PAMs were integrated into a soft matrix in a biomimetic orientation using three techniques; casting, thermal forming and layering. Designs were compared on an in vitro cardiac simulator and generated a volumetric displacement of up to 96ml when actuated for 200ms at 1Hz. Layering produced the lowest profile device that successfully conformed to the heart and this design is currently undergoing in vivo testing.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In