Full Content is available to subscribers

Subscribe/Learn More  >

Design and Control of a Three Finger Hand Exoskeleton for Translation and Rotation of a Slender Object

[+] Author Affiliations
Shyam Sunder Nishad, Anupam Saxena, Ashish Dutta

Indian Institute of Technology Kanpur, Kanpur, India

Paper No. DETC2015-47058, pp. V05AT08A041; 13 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


A three-finger exoskeleton is designed and controlled to translate and or rotate a slender object held between the fingertips. Each finger exoskeleton comprises of three serially concatenated planar external four-bar linkages, all on one plane, except for the thumb exoskeleton, for which one linkage is out of plane. Linkages are constrained to be on the dorsal side (sagittal plane) of each finger. To design each linkage, when performing coordinated translation and rotation, trajectories of all phalanges of the index and middle fingers and the thumb are obtained through video capture and post-processing that involves coordinate transformation. Optimal kinematic synthesis for each linkage is then performed via the three accuracy point method coupled with a stochastic search algorithm. Post manufacturing, the exoskeleton is mounted on the dorsal side of the hand using Velcro bands. Fastening is accomplished on each phalanx, palm and forearm via a fixture designed to house all three exoskeletons. Nine micro-servo motors are employed for actuation. To perform coordinated translation and rotation tasks, trajectory following is accomplished using open loop position control, incorporating artificial neural network to convert known finger joint angles into the required driving link angles. Based on experimental tests conducted, the exoskeleton is found to be successful in reproducing the requisite finger motions involved in coordinated object manipulation.

Copyright © 2015 by ASME
Topics: Rotation , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In