0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Partially Compliant, Three-Phalanx Underactuated Prosthetic Finger

[+] Author Affiliations
Marco W. M. Groenewegen, Milton E. Aguirre, Just L. Herder

Delft University of Technology, Delft, the Netherlands

Paper No. DETC2015-47055, pp. V05AT08A040; 7 pages
doi:10.1115/DETC2015-47055
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME

abstract

Advanced robotic hand prostheses are praised for their impressive robust and fine grasping capabilities generated from intricate systems. Nevertheless, a high demand remains for grasping mechanisms that are mechanically simple, lightweight, and cheap to produce, easy to assemble and low in maintenance costs. This paper presents the design of a partially compliant underactuated finger to demonstrate the feasibility of achieving these rigorous requirements. The conceptual topology of the three phalanx finger is selected based on competitive analysis. Employing Pseudo-Rigid Body Model and Finite Element Analysis, a genetic optimization problem is formulated to minimize bending stresses within compliant flexures. The result is a fully functional demonstrator capable of flexing 180° in finger rotation. The prototype is fabricated from flexible high strength nylon and requires no assembly steps beyond 3D printing. Experimental testing verifies the design method with an acceptable error of < 5%.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In