0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Performance Analysis of Minimally Actuated 4-Bar Linkages for Upper Limb Rehabilitation

[+] Author Affiliations
Evagoras G. Xydas

University of Cyprus, Nicosia, Cyprus

Andreas Mueller

Johannes Kepler University, Linz, Austria

Paper No. DETC2015-46828, pp. V05AT08A038; 13 pages
doi:10.1115/DETC2015-46828
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME

abstract

In the last two decades robotic rehabilitation research provided insight regarding the human-robot interaction, helped understand the process by which the impaired nervous system is retrained to better control the hand motion, and led to the development of a number of mathematical and neurophysiological models that describe both the hand motion and the robot control. Now that this pool of knowledge is available, the respective models can be applied in a number of ways outside the robot domain, in which, machines are based on open kinematic chains with n-degrees of freedom (DOF’s) and sophisticated computer control, actuation and sensing. One such example is the use of mechanisms, closed kinematic chains which can still generate complex — yet specific — trajectories with fewer DOF’s. This paper further extends previous work on the design of such passive-active mechanisms that replicate the natural hand motion along a straight-line. The natural hand motion is described by a smooth bell-shaped velocity profile which in turn is generated by the well-established Minimum-Jerk-Model (MJM). Three different straight line 4-bar linkages, a Chebyshev’s, a Hoeken’s and a Watt’s, are examined. First, with the use of kinetostatic analysis and given the natural hand velocity and acceleration, the torque function of non-linear springs that act on the driving link is deduced. Then, given that the springs are acting, interaction with impaired users is considered and the extra actuation power that can maintain the natural velocity profile is calculated. A multibody dynamics software is employed for further assessing the mechanisms’ dynamic response under varying interaction forces. Also, different parameters like inertia are altered and the effects on internal (springs) and external (actuator) power are examined. Then, the three mechanisms are compared with respect to size, required amount of external power, ergonomic issues etc. Finally, it is investigated whether a linear fit of the non-linear spring torque can be adequate for generating the desired MJM trajectory and operate effectively in collaboration with the active part of the control.

Copyright © 2015 by ASME
Topics: Linkages

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In