Full Content is available to subscribers

Subscribe/Learn More  >

Design and Experimental Evaluation of a Reconfigurable Gravity-Free Muscle Training Assistive Device for Lower-Limb Paralysis Patients

[+] Author Affiliations
Tzu-Yu Tseng, Wei-Chun Hsu, Chin-Hsing Kuo

Taiwan Tech, Taipei, Taiwan

Li-Fong Lin

Shuang Ho Hospital, New Taipei City, Taiwan

Paper No. DETC2015-46706, pp. V05AT08A037; 12 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


In lower-limb rehabilitation programs, patients that suffer from neuromuscular disorders with manual muscle test (MMT) level 2 are able to perform voluntary muscle contraction and visible limb movement provided that a therapist assists the patient to eliminate the weight of his/her leg. In addition, the physical therapist is clinically needed to guide the patient performing a hip-only or knee-only motion during rehabilitation. The objective of this paper is to present a new assistive training device that replaces the function of the therapist in helping the MMT-level-2 patients self-training their hip and knee flexion/extension motions under an antigravity environment. First, we will present a novel reconfigurable mechanism, which can possess two working configurations for guiding the knee-only and hip-only training, respectively. Then, based on the theory of static balancing, two linear springs are attached to the device to generate an antigravity training environment in both configurations for the patient. The static balance design is verified by a numerical example with the support of software simulation. A prototype is built up and tested on healthy subjects. By using the electromyography (EMG) measurement, the myoelectric signals of four major muscles for the subject with/without the aid of the device are analyzed. The results show that the myoelectric voltages of the stimulated muscles are significantly reduced when the subject is assisted with the device. It further demonstrates that moving the fixation positions of the limb segments to other positions could distinctly reduce the assistive force from the device, which suggests multiple training modes to the patients in strengthening the training intensity. In conclusion, this paper presents a successful pioneering work on the design of rehabilitation devices via the integration of the principles of reconfigurable mechanisms and static balancing.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In