Full Content is available to subscribers

Subscribe/Learn More  >

A Meso-Scale Rolling-Contact Gripping Mechanism for Robotic Surgery

[+] Author Affiliations
Clayton L. Grames, Jordan D. Tanner, Brian D. Jensen, Spencer P. Magleby, Larry L. Howell

Brigham Young University, Provo, UT

John Ryan Steger

Intuitive Surgical Inc., Sunnyvale, CA

Paper No. DETC2015-46516, pp. V05AT08A034; 11 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


A new, compact 2 degree-of-freedom mechanism 4.1 mm in diameter suitable for robotically controlled surgical operations is presented. Current commercially available robotically controlled instruments achieve high dexterity defined by three degrees of freedom and relatively confined swept volume at just under 1 cm in diameter. Current smaller diameter instruments result in high part count and large swept volumes (less dexterity). A meso-scale rolling contact gripping mechanism is proposed as an alternative. The manufacturing of the parts is made feasible by Metal Laser Sintering, which can produce parts that are difficult to replicate with traditional manufacturing methods. The resulting instrument has only 6 parts and a small swept volume. Instrument actuation and control by a surgical robotic system is demonstrated.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In