Full Content is available to subscribers

Subscribe/Learn More  >

On Synthesis of Contact Aided Compliant Mechanisms Using the Material Mask Overlay Method

[+] Author Affiliations
Prabhat Kumar, Anupam Saxena

Indian Institute of Technology Kanpur, Kanpur, India

Roger A. Sauer

RWTH Aachen University, Aachen, Germany

Paper No. DETC2015-47064, pp. V05AT08A017; 9 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


Contact Aided Compliant Mechanisms (CCMs) are synthesized via the Material Mask Overlay Strategy (MMOS) to trace a desired non-smooth path. MMOS employs hexagonal cells to discretize the design region and engages negative circular masks to designate material states. To synthesize CCMs, the modified MMOS presented herein involves systematic mutation of five mask parameters through a hill climber search to evolve not only the continuum topology (slave surfaces), but also, to introduce the desired rigid, interacting surfaces within some masks. Various geometric singularities are subdued via hexagonal cells though numerous V-notches get retained at the continuum boundaries. To facilitate contact analysis, boundary smoothing is performed by shifting boundary nodes of the evolving continuum systematically. Numerous hexagonal cells get morphed into concave sub-regions as a consequence. Large deformation finite element formulation with Mean Value Coordinates (MVC) based shape functions is used to cater to the generic hexagonal shapes. Contact analysis is accomplished via the Newton-Raphson iterations with load increment in conjunction with the penalty method and active set constraints. An objective function based on Fourier Shape Descriptors is minimized subject to suitable design constraints. An example of a path generating CCM is included to establish the efficacy of the proposed synthesis method.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In