Full Content is available to subscribers

Subscribe/Learn More  >

Conceptual Design of 2-DOF Flexure-Based Sensing Mechanisms for Superconductor Gravity Gradient

[+] Author Affiliations
M. Jia, R. P. Jia, J. J. Yu

Beihang University, Beijing, China

Paper No. DETC2015-46827, pp. V05AT08A015; 9 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


By employing screw theory and the freedom and constraint topology (FACT), the type synthesis for 2-DOF flexure-based sensing mechanism of superconductor gravity gradient was produced with the parameterized compliance approach. Six types of mechanism with 1R1T DOF were deduced with freedom and constraint pattern in parallel topologies. Based on the compliance analysis, one type was selected as preferred sensing mechanism with the comparison of freedom, main direction compliance, parasitic errors, precision and complexity. For reducing the parasitic and coupling errors, optimization was produced with the parameterized compliance approach. Then specific geometric properties were presented with compact structure for the measurement application. The simulations showed the results of analytical models were close to that of FEA (finite elements analysis) models and the maximum errors of compliance parameters were less than 6%. The conceptual design of 2-DOF flexure-based sensing mechanisms could reach the required functions.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In