0

Full Content is available to subscribers

Subscribe/Learn More  >

A Fully Compliant Constant Velocity Universal Joint

[+] Author Affiliations
D. Farhadi Machekposhti, N. Tolou, J. L. Herder

Delft University of Technology, Delft, The Netherlands

Paper No. DETC2015-46813, pp. V05AT08A014; 10 pages
doi:10.1115/DETC2015-46813
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME

abstract

This paper presents the concept and fabrication of a large deflection compliant Constant Velocity universal joint (CV joint). A novel compliant structure is proposed based on the 6R Hybrid spatial overconstrained linkage. Due to symmetry, its kinematic properties are such that can transfer rotational motion between two angled shafts with true constant velocity. The kinematic of the mechanism and the Pseudo-Rigid-Body model of its compliant configuration are studied and analyzed. A prototype was manufactured and experimentally evaluated. It was verified that the experimental results are consistent with the theoretical expectations.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In