0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a Constant-Force Flexure Micropositioning Stage With Long Stroke

[+] Author Affiliations
Qingsong Xu

University of Macau, Taipa, Macau, China

Paper No. DETC2015-46672, pp. V05AT08A012; 7 pages
doi:10.1115/DETC2015-46672
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME

abstract

This paper presents the design and analysis a flexure-guided compliant micropositioning stage with constant force and large stroke. The constant force output is achieved by combining a bistable flexure mechanism with a positive-stiffness flexure mechanism. In consideration of the constraint of conventional tilted beam-based bistable mechanism, a new type of bistable structure based on tilted-angle compound parallelogram flexure is proposed to achieve a larger range of constant force output while maintaining a compact physical size. To facilitate the parametric design of the flexure mechanism, analytical models are derived to quantify the stage performance. The models are verified by carrying out nonlinear finite-element analysis. Results demonstrate the effectiveness of the proposed ideas for a long-stroke, constant-force compliant mechanism dedicated to precision micropositioning applications.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In