Full Content is available to subscribers

Subscribe/Learn More  >

A Variable-Stiffness Straight-Line Compliant Mechanism

[+] Author Affiliations
Jeffrey C. Hawks, Mark B. Colton, Larry L. Howell

Brigham Young University, Provo, UT

Paper No. DETC2015-46650, pp. V05AT08A011; 10 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 39th Mechanisms and Robotics Conference
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5712-0
  • Copyright © 2015 by ASME


In this research a variable-stiffness compliant mechanism was developed to generate variable force-displacement profiles at the mechanism’s coupler point. The mechanism is based on a compliant Robert’s straight-line mechanism, and the stiffness is varied by changing the effective length of the compliant links with an actuated slider. The force-deflection behavior of the mechanism was analyzed using the Pseudo-Rigid Body Model (PRBM), and two key parameters, KΘ and γ, were optimized using finite element analysis (FEA) to match the model with the measured behavior of the mechanism. The variable-stiffness mechanism was used in a one-degree-of-freedom haptic interface (force-feedback device) to demonstrate the effectiveness of varying the stiffness of a compliant mechanism. Unlike traditional haptic interfaces, in which the force is controlled using motors and rigid links, the haptic interface developed in this work displays haptic stiffness via the variable-stiffness compliant mechanism. One of the key features of the mechanism is that the inherent return-to-zero behavior of the compliant mechanism was used to provide the stiffness feedback felt by the user. A prototype haptic interface was developed capable of simulating the force-displacement profile of Lachman’s Test performed on an injured ACL knee. The compliant haptic interface was capable of displaying stiffnesses between 4200 N/m and 7200 N/m.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In