Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of a Microfabricated Differential Scanning Calorimeter

[+] Author Affiliations
Shuyu Wang, Shifeng Yu

State University of New York at Stony Brook, Stony Brook, NY

Lei Zuo

State University of New York at Stony Brook, Stony Brook, NYVirginia Tech, Blacksburg, VA

Paper No. DETC2015-46136, pp. V004T09A002; 6 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 20th Design for Manufacturing and the Life Cycle Conference; 9th International Conference on Micro- and Nanosystems
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5711-3
  • Copyright © 2015 by ASME


Calorimeters are critical tools for structural based drug design and drug stability assessment. Current pharmaceutical industry is seeking for high throughput calorimeters to reduce the research time and expenditure. MEMS-based calorimeter is a potential solution for it, since they are miniaturized to detect the enthalpy change during macro molecular interaction with smaller amount of samples, shorter time and could easily enable parallel measurement. Consequently, we present a Differential Scanning Calorimeter (DSC) that requires 2μL sample volume. It has high thermal insulation (1210μW/K), small time constant (6.95s) and high sensitivity (7.5V/W). The low noise equivalent temperature difference (NETD) could lead to 130nW of power resolution. These characterization results indicate the device could be potentially applied for macromolecular interaction application and increase the throughput with high performance.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In