0

Full Content is available to subscribers

Subscribe/Learn More  >

Studying the Impact of Incorporating an Additive Manufacturing Based Design Exercise in a Large, First Year Technical Drawing and CAD Course

[+] Author Affiliations
Tian Chen, Paul Egan, Fritz Stöckli, Kristina Shea

ETH Zürich, Zurich, Switzerland

Paper No. DETC2015-47312, pp. V003T04A015; 10 pages
doi:10.1115/DETC2015-47312
From:
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5710-6
  • Copyright © 2015 by ASME

abstract

Additive Manufacturing (AM) is a revolutionary technology in the manufacturing sector, although it has yet to become a cornerstone of formal engineering education. This paper discusses the procedure, result, and impact of incorporating physical prototyping, design iteration, and Design for Additive Manufacturing (DfAM) in a first-year, first-semester technical drawing and CAD course. In the course, students design balloon powered model car assemblies and are expected to learn core concepts of engineering design, such as modeling, assemblies, and tolerancing. The course consists of 473 students that each design up to two unique model cars. These model cars are fabricated using AM from these CAD designs and returned to students for assembly. Surveys are given to students to empirically validate the usefulness of incorporating AM in the course, with regards to motivating students and improving their ability to accurately translate imagined designs from CAD to physical products. The results show improvement in student intrinsic motivation concerning CAD processes. Student design abilities are also assessed: when student designs do not function as intended, it corresponds with a greater mismatch in how they imagine their CAD design in comparison to its final physical assembly. The mismatch on average decreases for students who design a second model car, which suggests an improvement in design skills. As a whole, our findings demonstrate the feasibility and benefits of including AM in a first-year course, particularly with respect to improving student motivation and their development of key CAD-related skills. Such motivation and skill development is particularly important early in an engineer’s career as it can impact their potential to learn and design over the course of their budding career.

Copyright © 2015 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In