Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Investigation of Automotive Aerodynamics Using DrivAer Model

[+] Author Affiliations
Lu Miao, Steffen Mack, Thomas Indinger

Technical University of Munich, Garching bei München, Germany

Paper No. DETC2015-47805, pp. V003T01A039; 8 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5710-6
  • Copyright © 2015 by ASME


The use of experimental and numerical investigation to predict the aerodynamic characteristics of road vehicles is a standard practice in automotive design and development. Fundamental research has been often conducted on generic models with limited applicability to realistic cars. The DrivAer model developed in TU München possesses more representative car features. To encourage the use of the DrivAer model in independent research work, the experimental results and some numerical results were published.

In this paper, a new developed wind tunnel setup of the DrivAer model was introduced. A new suspension system was designed in such a way that drag and lift force could be measured whilst the wheels are rolling on the moving ground without wheel struts (In this paper we call it wheels-on setup). The more close-truth experimental results of different rear end configurations were obtained. The lift force of the total model was firstly obtained. Additionally, the influences of the wheel struts and top sting were studied.

Numerical investigation for performing finite-volume-based Reynolds-averaged Navier-Stokes (RANS) for the prediction of aerodynamic forces of passenger vehicles developed was presented, using the open-source CFD toolbox OpenFOAM®.

Validation of the predictions was done on the basis of detailed comparisons to experimental wind tunnel data, both of the basic body (wheelhouse covered and without wheels) and the new wheels-on model. Results of drag coefficient were found to compare favourably to the experiments.

Copyright © 2015 by ASME
Topics: Aerodynamics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In