Full Content is available to subscribers

Subscribe/Learn More  >

Multi-Level Optimization Method for Vehicle Body in Conceptual Design

[+] Author Affiliations
Wenbin Hou, Chunlai Shan, Hongzhe Zhang

Dalian University of Technology, Dalian, Liaoning, China

Paper No. DETC2015-48034, pp. V003T01A023; 10 pages
  • ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 17th International Conference on Advanced Vehicle Technologies; 12th International Conference on Design Education; 8th Frontiers in Biomedical Devices
  • Boston, Massachusetts, USA, August 2–5, 2015
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5710-6
  • Copyright © 2015 by ASME


Since product development lead-time needs to be as short as possible in contemporary enterprises, it is necessary to assess and optimize the performance of the structure in conceptual design phase for avoiding the time consuming production of trial models for vehicle body. This paper proposes a conceptual design tool based on optimization algorithms for global body frames named Vehicle Concept Design-Intelligent CAE system (VCD-ICAE). A multilevel optimization algorithm is applied to optimize the body performance, decide the size parameters, and generate cross-sectional shapes that satisfy design engineers’ required characteristics. The global body stiffness and vibration property would be optimized while decreasing the mass of body. The paper describes the implementation of the optimal algorithm, and Genetic algorithms are applied to solve the optimization problem. A case of optimization for a real car is given to verify the validity of the algorithm.

Copyright © 2015 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In